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Abstract. A theoretical study of the one- and two-photon spontaneous emission rates from the 2s1/2 state
of one-electron ions is presented. High-precision values of the relativistic emission rates for ions with nuclear
charge Z up to 100 are obtained through the use of finite basis sets for the Dirac equation constructed from
B-splines. Furthermore, we analyze the influence of the inclusion of quantum electrodynamics corrections
in the initial and final state energies.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 32.70.Fw
Absolute and relative intensities – 32.80.Wr Other multiphoton processes

1 Introduction

One of the most widely studied atomic transition in which
selection rules forbid the emission of one electric dipole
photon is the radiative decay of the metastable 2s1/2 state
to the 1s1/2 ground state of H-like systems. This meta-
stable state can decay by either one of following two com-
peting processes: the emission of a single photon, or the
emission of two photons (which proceeds via intermediate
sates). In the former case, the process

2s1/2 → 1s1/2 + hν (1.1)

which is highly inhibited by the angular momentum and
parity selection rules, can only proceed trough relativistic
corrections to the magnetic dipole (M1) matrix element
[1–3] and is therefore slower than an ordinary allowed elec-
tric dipole (E1) decay rate by a factor of Z6, where Z is
the atomic number of the hydrogenic system.

In the two photons decay mode,

2s1/2 → 1s1/2 + hν1 + hν2 (1.2)

the two photons are emitted with a continuous distribu-
tion due to conservation of energy, such that

hν1 + hν2 = E2s1/2
−E1s1/2

. (1.3)

There are an endless number of possibilities for this pro-
cess, such as 2M1, 2E2, 2M2, 2E3, .., E1M1, E2M1,
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E2M3, ..., where 2On means a transition which involves
two photons On, and OnO′m means a transition that in-
volves one photonOn and one photonO′m. In this nomen-
clature E and M stands, respectively, for a electric type
and magnetic type photon, and the adjacent numbers in-
dicate the angular momentum quantum number, `, of the
photon. The 2E1 transition is the most probable of all the
combinations.

Early interest in the decay of metastable states of hy-
drogen and helium stemed from astrophysics. Under the
low-density conditions that prevail in planetary nebulae,
for example, the simultaneous emission of two photons
by an H atom in the metastable 2s1/2 level is consid-
ered as a source of continuum [4]. About 32 per cent
of electron captures lead directly to the 2s1/2 level and
subsequently to two-photon emission, since collisional de-
excitation proves unimportant. A similar mechanism is
verified for the 1s2s 1S0 state of helium, which depopu-
lates primarily by two-photon emission, while the 1s2s 3S1

state depopulates at approximately equal rates by colli-
sions and by radiation [5]. Consequently, the ratio of line
intensities in the helium triplet spectrum can be used as
a density probe for the nebula [6,7]. The spectra of he-
liumlike ions in the solar corona and solar flare provide
similar information [5] that can lead to the determination
of electron densities in thermal cosmic ray x-ray sources
[5,8].

More recently, attention has been payed to two-photon
transitions in high-Z ions, e.g., U90+, in the context of the
study of parity-violation effects in atoms [9].
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In many-electron systems two-photon transitions are
normally overwhelmed by allowed electric dipole single
photon emission and Auger transitions. However, some
two-photon experiments have been performed in such sys-
tems [10–14].

This work is the first step in obtaining a general, many-
electron code in the framework of the multiconfiguration
Dirac-Fock method (MCDF) [15–19] where we will use B-
splines basis sets to compute high-precision value of two-
photon spontaneous emission rates for many-electron sys-
tems.

2 Historical overview

2.1 Theory

The earliest theoretical work on two-photon processes is
due to Goppert-Mayer [20], who, after studying sponta-
neous and induced two-photon emission on the basis of
Dirac’s theory of dispersion, proposed that the simultane-
ous emission of two photons in hydrogen was the dominant
decay mode for the 2s1/2 state.

This conclusion was confirmed by Breit and Teller [21].
They applied Goppert-Mayer’s theory and estimated both
M1 and 2E1 2s→ 1s transition rates in atomic hydrogen
and found that two-photon emission is the most probable
radiative decay mode, and is therefore the principal cause
of the mechanism of interstellar 2s hydrogen atoms. They
also found upper and lower limits for the decay rate, 1/τ ,
corresponding to this mode of decay: 6.5 < 1/τ < 8.7 s−1.

Later, more detailed nonrelativistic calculations of the
2E1 2s→ 1s rate in hydrogen were carried out by Spitzer
and Greenstein [4] and by Shapiro and Breit [5], which
involved term-by-term numerical evaluation of the infi-
nite summation over intermediate states in the second-
order matrix elements responsible for the decay. The for-
mer found 8.227 s−1 for hydrogen and the latter found
(8.226± 0.001)Z6 s−1 for the decay of a hydrogenic ion of
nuclear charge Z.

Klarsfeld [22], obtained an analytic expression for the
two-photon transition matrix element in terms of hyperge-
ometric functions and performed a highly accurate nonrel-
ativistic calculation for the 2E1 decay rate for hydrogenic
ions 2s→ 1s reaching the result (8.2283± 0.0001)Z6 s−1.
This result, when corrected for revised values of the fun-
damental constants, becomes 8.22938 Z6 s−1, according
to Drake [23].

In the framework of nonrelativistic dipole approxima-
tion other calculations were performed, for instance, by
Tung et al. [24] (who got the result 8.2284 s−1 for the
hydrogenic 2s → 1s transition) and by Costescu et al.
[25]. They introduced improvements in the mathematical
formalism by expressing the finite summations over inter-
mediate states in terms of hypergeometric functions, but
did not improve significantly upon Klarsfeld’s result. Us-
ing the nonrelativistic approach as well, Bassani [26] and
Quattropani [27] made calculations for the two-photon ex-
citations from the ground state of atomic hydrogen to ns
excited states.

More recently, Drake [23] used a finite basis-set
method to calculate the nonrelativistic 2E1 2s → 1s
rate in hydrogen and obtained the high-precision value
of 8.2293810 s−1.

Florescu [28] developed a theory of two-photon tran-
sitions in hydrogenlike systems including the transitions
from higher shells. According to her results, the 3d→ 1s
double-photon transition should be 5 times stronger than
2s→ 1s double-photon transition.

The first relativistic calculations of the decay rates
was done by Johnson [29]. By avoiding any expansion in
(αZ) and replacing the usual summations over interme-
diate states by a numerical evaluation of the relativistic
Green’s function for the electron, Johnson performed a rel-
ativistic numerical calculation for the 2E1 2s→ 1s rate in
the hydrogenic isoelectronic sequence and obtained results
correct to lowest orders in α for a large number of Z < 92.
He also calculated M1 decay rates in a closed analytical
form, and the total decay rate for the 2s→ 1s transition
in hydrogenic ions for the same set of Z values.

Goldman and Drake [30] carried out a calculation of
the two-photon decay rate for 2s1/2 hydrogenic ions. They
included relativistic effects and some combinations of pho-
ton multipoles that make significant contributions in the
numerical evaluation of the results for a set of Z val-
ues. These authors summed over intermediate states by
constructing a finite-basis-set representation of the Dirac
Green’s function. These calculations have yielded results
substantially different from the previous direct numeri-
cal calculations of Johnson [29]. Goldman and Drake have
pointed out that these differences arise because higher-
order terms in the expansion of the photon multipole po-
tential were omitted in Johnson’s evaluation.

In a later work, Parpia and Johnson [31] used a direct
numerical Green’s function technique to treat the mul-
tipole potential and obtained results that agree closely
with those of Goldman and Drake [30], confirming their
hypothesis. After Parpia and Johnson, the small remain-
ing discrepancies between their results and Goldman and
Drake ones could be attributed to the difference in the
methods used to treat the hydrogenic Green’s function.

Goldman [32] introduced a variational method based
on the orthogonality properties of the Laguerre polynomi-
als, in which all the matrix elements of the Dirac Hamil-
tonian are calculated in closed form. This method was
applied to a calculation of the two-photon rates for hy-
drogenic ions and resolved the discrepancy between the
previous calculation of Parpia and Johnson and that by
Goldman and Drake in favor of the latter.

Barut and Salamin [33], describing the level width as
the imaginary part of the self-energy, calculated the rela-
tivistic rates of the M1 2s → 1s transition in the hydro-
gen isoelectronic sequence. These authors compared their
results with those of Johnson [29] and of Parpia and John-
son [31] and found an almost complete agreement with the
former ones.

Recently, using a representation of the Dirac Coulomb
Green function in terms of an expansion over a Sturmian
basis, Szymanowski [34] computed two-photon probability
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amplitudes for transitions in hydrogenic atoms from the
ground state towards states in the L and M shells.

2.2 Experiments

Precision lifetime measurements can readily test the the-
ory of atomic structure by providing experimental results
that are sensitive to both the wave functions and energies
of given configurations.

Although the basic theory of two-photon emission has
been available since the beginning of the thirties with the
work of Goppert-Mayer [20], laboratory experimentation
were not performed before 1965. Lipeles, Novick and Tolk
[35] by the application of atomic beam techniques pio-
neered the study of the 2s→ 1s transition in ionized he-
lium. Their basic method was subsequently enhanced by
Marrus and Schmieder [36] who studied a number of heavy
hydrogenic and heliumlike ions, using the newly developed
beam-foil technology.

Since that time, the increased availability of highly
charged heavy ions from accelerator facilities around the
world have enabled many experiments, among which the
ones by Kocher, Clendenin and Novick [37] (H-like He),
Marrus and Schmieder [36] (H-like and He-like Argon),
Prior [38] (H-like He), Cocke et al. [39] (H-like F and O),
Hinds, Clendenin and Novick [40] (H-like He), Gould and
Marrus [41] (H-like Ar), Marrus et al. [42] (He-like Kr),
Dunford et al. [43] (H-like and He-like Ni), Dunford et al.
[44] (He-like Br) and Simionovici et al. [45] (He-like Nb).

All these experiments have been limited to the study
of two-photon transitions from the metastable 2s level for
which there is no competing strongly allowed one-photon
transition. This is because two-photon emission is typi-
cally 4−8 orders of magnitude weaker than strongly al-
lowed one-photon emission. Indeed, the importance of the
atomic beam technique pioneered by Lipeles, Novick and
Tolk [35] is that it yields a beam of nearly pure metastable
atoms downstream of the region in which all strongly
allowed one-photon transitions take place. Short-pulse ex-
citation would, in some circumstances, offer a similar ad-
vantage.

Of course, two-photon transitions from nonmetastable
states are also of intrinsic interest, as is the study of
such transitions between the inner shells of many-electron
atoms. For such systems beam techniques appear to of-
fer no particular advantage since they cannot be used
to eliminate strong one-photon emission. For these sys-
tems, only ingenious state-of-the-art experimental tech-
niques have made it possible recently to detect two-photon
transitions in many-electron systems, in which the pro-
cess is overwhelmed by the allowed single-photon emis-
sion. Bannett and Freund [10,11], followed by Ilakovac et
al. [12] and Mu and Crasemann [13,14], have been able to
report measurements of two-photon x-ray emission from
one-electron inner-shell transitions, i.e., from a transition
other than 2s→ 1s.

Contrary to the large number of experiments in the
study of two-photon 2s → 1s transition, as far as our

knowledge goes, few precise measurements of the single-
photon M1 decay rates have yet been reported. Besides
the reference to their effect, without measurement, made
by Gould and Marrus [41], there are the measurements of
the M1 2s→ 1s decay amplitude in Ag46+ and in Kr35+,
made by Simionovici et al. [45] and by Cheng et al. [46],
respectively.

3 Theory of relativistic radiative transitions

3.1 One-photon transitions

In the theory of quantum electrodynamics, the interac-
tion potential between the electromagnetic field and the
electro-positron field depends on the choice of gauge [47].
Therefore, the expression for the electric multipole tran-
sition matrix becomes gauge dependent. The spontaneous
emission rate for a one-photon transition i→ f , is [48], in
atomic units,

wi→f = 2αω
[jf ]

[L]

 ji L jf

1/2 0 −1/2

2 ∣∣Mfi

∣∣2 , (3.1)

where Mfi involves only radial integrals. The notation
[j, k, . . . ] means (2j + 1)(2k + 1) . . . For magnetic type
multipoles

M
m

fi = M
(0,L)

fi =
2L+ 1

[L(L+ 1)]1/2
(κf + κi) I

+
L (3.2)

whereas for electric type multipoles, the value depends
linearly on the gauge parameter

M
e

fi (G) = M
(1,L)

fi +GM
(−1,L)

fi , (3.3)

where

M
(1,L)

fi =

(
L

L+ 1

)1/2 [
(κf − κi)I

+
L+1 + (L+ 1)I−L+1

]
−

(
L+ 1

L

)1/2 [
(κf − κi)I

+
L−1 − LI

−
L−1

]
(3.4)

M
(−1,L)

fi = (2L+ 1)JL

+ (κf − κi)
(
I+
L+1 + I+

L−1

)
−LI−L−1 + (L+ 1)I−L+1. (3.5)

In the notation used by Rosner and Bhalla [49], the I±L (ω)
and JL(ω) integrals are defined as follows:

I±L (ω) =

∫ ∞
0

(PfQi ±QfPi) jL
(ωr
c

)
dr, (3.6)

and

JL(ω) =

∫ ∞
0

(PfPi +QfQi) jL
(ωr
c

)
dr, (3.7)
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where P and Q are the large and small components of
the radial Dirac wave function respectively. The photon
frequency (Ei−Ef ) is denoted by ω; ji, κi, and Ei are re-
spectively, the total angular momentum, relativistic num-
ber, and energy of the initial state. The corresponding
quantities for the final state are jf , κf , and Ef .

Grant [48] discussed the implications of this depen-
dence of the gauge parameter G on the transition rate
of by considering the nonrelativistic limits for electric
dipole (E1) transitions. Among the great variety of possi-
ble gauges, he showed that there are two values ofG which
are of particular utility because they lead to well known
nonrelativistic operators. First, if G = 0, one has the so
called Coulomb gauge, or velocity gauge, which leads to
the dipole velocity form in the nonrelativistic limit. Sec-
ond, if G = [(L + 1)/L]1/2, or more specifically G =

√
2

for E1 transitions (L = 1), one obtains nonrelativistically
an expression which reduces to the dipole length form of
the transition operator.

3.2 Two-photon transitions

The theory of two-photon transitions is given in detail in
reference [30]. We repeat here only the relevant points.
The basic expression for the differential emission rate is,
in atomic units, [47]

dw

dω1
=

ω1ω2

(2π)3c2

∣∣∣∣∣∑
n

〈f | Ã∗2 |n〉 〈n| Ã
∗
1 |i〉

En −Ei + ω1

+
〈f | Ã∗1 |n〉 〈n| Ã

∗
2 |i〉

En −Ei + ω2

∣∣∣∣∣
2

dΩ1dΩ2 (3.8)

where i and f denote the initial and final states, ωj is the
frequency, and dΩj the element of solid angle for the jth
photon. The summation over n includes integrations over
the continua for both positive and negative energy solu-
tions for the Dirac equation. Conservation of the energy
requires

Ei −Ef = ω1 + ω2, (3.9)

which permits only one of the two photon frequencies to
be independent.

Integrating the differential emission rate expression
( 3.8) we get the transition probability per unit time for a
transition in which is emitted one photon Θ1L1 and one
photon Θ2L2 [50],

WΘ1L1,Θ2L2 =

∫ ωif

0

dWΘ1L1,Θ2L2

dω1
dω1 , (3.10)

where

Θ = E,M L = 1, 2, . . . (3.11)

The averaged decay rate dW/dω1 is given by the expres-
sion

dW

dω1
=

ω1ω2

(2π)3c2 (2ji + 1)

×
∑

L1,λ1,L2,λ2,j

{
[Sj(2, 1)]2 + [Sj(1, 2)]2

+ 2
∑
j′

(−1)2j′+L1+L2 [j, j′]1/2
(
jf j

′ L1

ji j L2

)

× Sj(2, 1)Sj
′

(1, 2)

}
, (3.12)

where

Sj(2, 1) =
∑
nj

M
(λ2,L2)
f,nj (ω2)M

(λ1,L1)
i,ni (ω1)

Enj −Ei + ω1
∆j(2, 1),

(3.13)

and

∆j(2, 1) =
4π [ji, j, jf ]

1/2

[L1, L2]
1/2

×

(
jf L2 j

1/2 0 −1/2

)(
j L1 ji

1/2 0 −1/2

)
. (3.14)

The matrix elements M
(λ,L)
f,i were defined above by the ex-

pressions (3.2), (3.4) and (3.5).
Finally, the spontaneous emission transition probabil-

ity per unit time for a two-photon transition is given by

w =
∑

all Θ1,L1,Θ2,L2

dΘ1L1,Θ2L2WΘ1L1,Θ2L2 (3.15)

where

dΘ1L1,Θ2L2 =

 1 if Θ1L1 6= Θ2L2

1/2 if Θ1L1 = Θ2L2.
(3.16)

The factor (1/2) is included to avoid counting each pair
twice when both photons have the same characteristics.

4 Solution of the Dirac-Fock equation
on a B-splines basis set

We will suppose that the atom, or ion, is enclosed in a
finite box with a radius large enough to get a good ap-
proximation of the wavefunctions, with some suitable set
of boundary conditions. In that case, one obtains a finite
set, with the continuum described by discrete functions.

Let us denote by {φin(r), i = 1, . . . , 2N} such a set of
solutions where n is the level number and i the position
of the solution in the set. For each n the set {φin(r), i =
1, . . . , 2N} is complete. Each φin(r) obeys [51] VDF (r) −

d

dr
+
κ

r
d

dr
+
κ

r
−2mc+ VDF (r)

φin(r) = αεinφ
i
n(r). (4.1)
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In the relativistic case, a complete set spans both posi-
tive and negative energy solutions. Solutions i = 1, . . . , N
represent the continuum εin < −2mc2 and solutions i =
N + 1, . . . , 2N represent bound states (the few first ones)
and the εin > 0 continuum using the conventions of equa-
tion (4.1). For practical reasons, such as easy numerical
implementation, this set of solutions is itself expressed as
linear combination of another basis set. We have choosen
the B-splines basis set, for which integrations of numeri-
cal functions are easy to handle. The method we used and
the derivation of the solutions of equation (4.1) in terms
of B-splines are exactly identical to those described in de-
tail by Johnson, Blundell and Saperstein in reference [52],
and will not be reproduced here.

5 Quantum electrodynamics corrections
to the initial and final States

In order to test the influence of the quantum electrody-
namics (QED) corrections on the 2s−1s transition, we
have performed calculations of the one-photon M1 de-
cay rates w(M1) and of the total two-photon decay rates
w(2γ) adding radiative corrections to the initial and final
state energies.

Since we are studying hydrogenlike ions, the only QED
corrections we have considered are the one-electron radia-
tive corrections. For that case one has to evaluate a per-
turbation expansion in powers of the fine structure con-
stant α ≈ 1/137, each power of α corresponding to one ex-
changed photon. For high Z the self-energy must be calcu-
lated to all orders in (Zα) which represent the strength of
the electron-nucleus interaction, which cannot be treated
perturbatively at high-Z. The one-electron corrections are
of order α(Zα)4mc2. The one-electron corrections of order
α(Zα)4mc2 are the self-energy and vacuum polarization.

The self-energy part contributions and the correspon-
dent finite nuclear size corrections included in this work
are those calculated by Mohr and collaborators [53–56]
for several (n, `), and by Mohr and Soff [57], respectively.
The vacuum polarization part can be evaluated using well
known potentials [58,59] and can, in contrast to the self-
energy, be approximated by a few terms in the expansion
in Zα. Here we include the first two contributions scaling
as α(Zα)4 mc2 (Uehling potential [58]) and as α(Zα)6

mc2. All-order calculations have been performed and they
show that the convergence in Zα is fast [60–62]. These cal-
culations were calculated with the MCDF code developed
by J.P. Desclaux, P. Indelicato and collaborators [15–19].

The second order one-electron radiative corrections
have not been fully calculated. Still missing (for high-Z)
is the two-loop self-energy (except for a piece of an ir-
reducible diagram [63]), which can only be calculated by
extrapolating recent calculations for low-Z [64]. This kind
of extrapolation has been shown to be unreliable for the
one loop self-energy [53]. For uranium (Z = 92) all other
pieces (mixed self-energy vacuum polarization diagrams
[64,65]) have been calculated recently. The two-loop vac-
uum polarization can be easily calculated by combining

Table 1. Different calculations of the 2E1 decay rates for the
2s1/2 state in hydrogenic ions in s−1, for selected values of the
nuclear charge Z.

Z−6w(2E1)

Goldman Parpia This

Z and Drakea and Johnsonb Goldmanc calculation

1 8.2291 8.2291 8.2290626 8.229063

20 8.1181 8.1196 9.1174035 8.117111

40 7.8096 7.8116 7.8092612 7.809031

60 7.3446 7.3453 7.3446482 7.344138

80 6.7440 6.7426 6.7428876 6.741590

92 6.3097 6.3093 6.3096623 6.309096

a S.P. Goldman, G.W.F. Drake, reference [30]
b F.A. Parpia, W.R. Johnson, reference [31]
c S.P. Goldman, reference [32]

the Källén and Sabry contribution [66], with the differ-
ence between self-consistent and perturbative calculations
of the Uehling potential.

Finally, and to be complete, we include a nuclear po-
larization correction [67–69], which in this case is small
compared to the experimental precision and second-order
QED corrections.

6 Results and discussion

6.1 2s−1s decay rates

We apply now the B-splines basis set to the relativistic
calculation of the one- and two-photon decay rates of the
2s1/2 state in hydrogenic ions, where we used finite nuclear
size assuming a uniform nuclear charge distribution. The
stability and accuracy of the results have been verified
with respect to variations of both the gauge invariance
and the basis set parameters: the size of the basis set, i.e.,
the number of B-splines (ns), the degree of the B-splines
(k) and the radius of the cavity (R). The parameters used
in the calculation of the present results are: k = 9, ns = 59
and R = 40 a.u.

The integration with respect to the photon frequency
has been performed using a Gauss-Legendre integration
with 15 points. We believe that the present calculations
are accurate to all figures quoted, since the variation rela-
tive to the the Gauss-Legendre integration points, k, and
ns, assures a convergence of the results to at least one
figure beyond those shown in the tables, while the agree-
ment between length- and velocity-gauge values continues
to at least six figures beyond those shown in the tables.
Enough multipoles have been included in the calculation
of the total 2-photon decay rates to obtain an accuracy of
six significant digits for values of the nuclear charge from
Z = 1 to Z = 100.

The results obtained for the 2E1 contributions for the
total decay rate of H-like ions for a set of nuclear charge
values Z is presented in Table 1,

where we compare with other calculations. We note
that the difference between the results is larger than the
last digit quoted. In the case of the Z = 20 Goldman’s



48 The European Physical Journal D

Table 2. Multipole combinations included in the present calculation of the total two-photon decay rates, with the allowed
intermediate states in the summation of equation (3.13).

Contribution (s−1)
Intermediate

Multipoles states Z = 1 Z = 54 Z = 92
2E1 p1/2, p3/2 8.229063 1.859221 × 1011 3.825552 × 1012

E1M2 p3/2 2.537183 × 10−10 4.927784 × 107 9.138566 × 109

2M1 s1/2, d3/2 1.380359 × 10−11 3.402664 × 106 1.109270 × 109

2E2 d3/2, d5/2 4.907232 × 10−12 9.817756 × 105 1.785817 × 108

2M2 p3/2, f5/2 3.069354 × 10−22 5.502043 × 102 9.906518 × 105

E2M3 d5/2 1.422935 × 10−22 2.637946 × 102 4.949021 × 105

E2M1 d3/2 1.637802 × 10−23 4.416201 × 101 1.766901 × 105

2E3 f5/2, f7/2 5.526719 × 10−24 9.721688 × 100 1.614230 × 104

E3M2 f5/2 3.193886 × 10−34 6.236436 × 10−3 1.586533 × 102

Table 3. Contributions from different combinations of multipoles to the integrated decay rate w (s−1). The Goldman’s results
are from reference [32] and the Goldman and Drake’s results are from reference [30].

2E1 E1M2 2M1 2E2
Z−6w Z−101010w Z−101011w Z−101012w

This calculation 8.2290626 2.5371825 1.3803590 4.9072324

Goldman 8.22906 2.53718 1.38036 4.90723

Goldman and Drake 8.2291 2.5371 1.3804 4.9072

2M2 E2M3 E2M1 2E3 E3M2
Z−141022w Z−141022w Z−141023w Z−141024w Z−181034w

This calculation 3.0693540 1.4229345 1.6384276 5.5267188 3.1936424

Goldman 3.06935 1.42293 1.63936 5.52671 3.19817

Goldman and Drake 4.0890 5.7520

Table 4. Frequency distribution of the two-photon decay rate. The spectral function ψ(y,Z) is defined by equation (6.1) in the
text.

y\Z 1 20 40 60 80 92 92

(incl. QED)

0.0625 2.031203 1.943383 1.711577 1.413992 1.121326 0.972174 0.965492

0.1250 3.155900 3.083222 2.873568 2.560789 2.183861 1.952175 1.941688

0.1875 3.841947 3.783957 3.609879 3.334509 2.971781 2.729653 2.716475

0.2500 4.281391 4.235743 4.094683 3.863922 3.542724 3.317943 3.302706

0.3125 4.566370 4.530352 4.416121 4.224868 3.947630 3.747587 3.730800

0.3750 4.745181 4.716023 4.621301 4.459965 4.218603 4.040831 4.022954

0.4375 4.843859 4.818805 4.735867 4.592954 4.374439 4.211431 4.192909

0.5000 4.875429 4.851738 4.772716 4.635913 4.424934 4.266742 4.248013
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Table 5. Decay rates of the 2s1/2 state (s−1). Z is the nuclear
charge.

Z w(M1) w(2γ) w(tot)

1 2.49591901 × 10−6 8.229063 8.229065

2 2.55626238 × 10−3 5.266042 × 102 5.266068 × 102

3 1.47448885 × 10−1 5.997292 × 103 5.997440 × 103

4 2.61939935 3.368840 × 104 3.369102 × 104

5 2.44075507 × 101 1.284703 × 105 1.284948 × 105

6 1.51219742 × 102 3.834621 × 105 3.836133 × 105

7 7.06964753 × 102 9.665073 × 105 9.672143 × 105

8 2.68960303 × 103 2.152429 × 106 2.155119 × 106

9 8.74246719 × 103 4.361002 × 106 4.369745 × 106

10 2.51003240 × 104 8.200570 × 106 8.225670 × 106

11 6.51818482 × 104 1.451723 × 107 1.458241 × 107

12 1.55805459 × 105 2.444948 × 107 2.460528 × 107

13 3.47395680 × 105 3.948826 × 107 3.983565 × 107

14 7.30032314 × 105 6.154224 × 107 6.227228 × 107

15 1.45779185 × 106 9.300828 × 107 9.446608 × 107

16 2.78454759 × 106 1.368469 × 108 1.396314 × 108

17 5.11524642 × 106 1.966626 × 108 2.017779 × 108

18 9.07769992 × 106 2.767891 × 108 2.858668 × 108

19 1.56211038 × 107 3.823790 × 108 3.980001 × 108

20 2.61488033 × 107 5.194978 × 108 5.456466 × 108

21 4.26945535 × 107 6.952229 × 108 7.379175 × 108

22 6.81531341 × 107 9.177457 × 108 9.858988 × 108

23 1.06578441 × 108 1.196478 × 109 1.303057 × 109

24 1.63563871 × 108 1.542164 × 109 1.705728 × 109

25 2.46724142 × 108 1.966992 × 109 2.213716 × 109

26 3.66298161 × 108 2.484712 × 109 2.851010 × 109

27 5.35897415 × 108 3.110759 × 109 3.646656 × 109

28 7.73430228 × 108 3.862374 × 109 4.635804 × 109

29 1.10222453 × 109 4.758729 × 109 5.860953 × 109

30 1.55241116 × 109 5.821062 × 109 7.373473 × 109

32 2.98171369 × 109 8.539707 × 109 1.152142 × 1010

34 5.50996703 × 109 1.223449 × 1010 1.774446 × 1010

36 9.84022291 × 109 1.716321 × 1010 2.700343 × 1010

38 1.70476667 × 1010 2.362974 × 1010 4.067741 × 1010

40 2.87414359 × 1010 3.198853 × 1010 6.072997 × 1010

42 4.72840541 × 1010 4.264918 × 1010 8.993323 × 1010

45 9.57795011 × 1010 6.400027 × 1010 1.597798 × 1011

46 1.19994177 × 1011 7.281768 × 1010 1.928119 × 1011

47 1.49641928 × 1011 8.261063 × 1010 2.322526 × 1011

50 2.82903863 × 1011 1.186870 × 1011 4.015908 × 1011

54 6.27019120 × 1011 1.859758 × 1011 8.129949 × 1011

55 7.58563275 × 1011 2.069368 × 1011 9.655000 × 1011

58 1.31864299 × 1012 2.816997 × 1011 1.600343 × 1012

60 1.87950004 × 1012 3.428003 × 1011 2.222300 × 1012

62 2.65095005 × 1012 4.142831 × 1011 3.065233 × 1012

65 4.36179752 × 1012 5.438258 × 1011 4.905623 × 1012

66 5.12606662 × 1012 5.936543 × 1011 5.719721 × 1012

70 9.58256840 × 1012 8.313011 × 1011 1.041387 × 1013

74 1.73921410 × 1013 1.140289 × 1012 1.853243 × 1013

75 2.01035177 × 1013 1.230364 × 1012 2.133388 × 1013

78 3.07616136 × 1013 1.535228 × 1012 3.229684 × 1013

80 4.05520829 × 1013 1.769879 × 1012 4.232196 × 1013

82 5.31771608 × 1013 2.032135 × 1012 5.520930 × 1013

85 7.91168010 × 1013 2.482088 × 1012 8.159889 × 1013

86 9.01056465 × 1013 2.648282 × 1012 9.275393 × 1013

90 1.49999200 × 1014 3.401841 × 1012 1.534010 × 1014

92 1.92403666 × 1014 3.835980 × 1012 1.962396 × 1014

100 5.03848601 × 1014 6.008640 × 1012 5.098572 × 1014

Table 6. Comparison between theoretical and experimental
total lifetime values (s) of the 2s1/2 state.

Ion Experiment This calculation

He+ (2.04+0.81
−0.34)× 10−3 a 1.898950 × 10−3

(1.922± 0.082) × 10−3 b

(1.923± 0.002) × 10−3 c

O7+ (4.53± 0.43)× 10−7 d 4.640116 × 10−7

F8+ (2.37± 0.17)× 10−7 d 2.288463 × 10−7

S15+ (7.3± 0.7) × 10−9 e 7.161711 × 10−9

Ar17+ (3.54± 0.25)× 10−9 e 3.498133 × 10−9

(3.487± 0.036) × 10−9 f

Ni27+ (2.171± 0.018) × 10−10 g 2.157123 × 10−10

Ag46+ (4.49± 0.08)× 10−12 h 4.305658 × 10−12

a C. A. Kocher, J.E. Clendenin, and R. Novick [37]
b M.H. Prior [38]
c E.A. Hinds, J. E. Clendenin, and R. Novick [40]
d C.L. Cocke et al. [39]
e R. Marrus and R.W. Schmieder [36]
f H. Gould and R. Marrus [41]
g R.W. Dunford et al. [43]
h A. Simionovici et al. [45]
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Fig. 1. Frequency distribution of each multipole contribution
included in the calculation of the total two-photon decay rates
for Z = 92.

value, which differs more than one unit, we believe that
there was a misprint.

In Table 2 we list all the multipole combinations in-
cluded in the calculation in order to reach the accuracy
presented. We also show which intermediate states are to
be included in each case in the summations in equation
(4.1), as well as the values of each contribution for Z = 1,
54 and 92.

The breakdown of the integrated decay rate w into
contributions from different combinations of multipoles is
shown in Table 3, as well the contributions calculated by
Goldman [32] and Goldman and Drake [30], where, except
for the 2M2 and E2M3 cases, we notice a fair agreement
between the 3 sets of results. In the mentioned 2 cases
Goldman and Drake’s results differ more than one unit
from the other 2 sets of results.
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Table 7. The influence of the QED corrections on one-photon decay rates w(M1), in s−1, for the 2s1/2 state of H-like ions, for
selected values ofthe nuclear charge Z.

Z w(M1) w(M1) incl. QED corr. ∆

1 2.49591901 × 10−6 2.49455106 × 10−6 0.05%

20 2.61488033 × 107 2.61394546 × 107 0.04%

40 2.87414359 × 1010 2.87163893 × 1010 0.09%

60 1.87950004 × 1012 1.87675182 × 1012 0.15%

80 4.05520829 × 1013 4.04647736 × 1013 0.22%

92 1.92403666 × 1014 1.91896638 × 1014 0.26%

Table 8. The influence of the QED corrections on two-photon decay rates w(2γ), in s−1, for the 2s1/2 state of H-like ions, for
selected values of the nuclear charge Z.

w(2γ) w(2γ) including QED corr.

Z Coulomb and length gauges Coulomb gauge length gauge ∆

1 8.2290626143 8.2234343414 8.2234650306 0.07%

20 5.1949783956 × 108 5.1918037265 × 108 5.1918056077 × 108 0.06%

40 3.1988531806 × 1010 3.1940268092 × 1010 3.1940326673 × 1010 0.15%

60 3.4280025068 × 1011 3.4192756713 × 1011 3.4192930844 × 1011 0.25%

80 1.7698790233 × 1012 1.7631831699 × 1012 1.7632042151 × 1012 0.38%

92 3.8359800476 × 1012 3.8180133338 × 1012 3.8180892579 × 1012 0.47%

To present the spectral distribution for a specific value
of Z, it is convenient to express the results in the form
suggested by Spitzer and Greenstein [4]

dW

dy
= Z6

(
9α6

210

)
ψ(y, Z) Ry (6.1)

where y = ω/ωif is the fraction of the photon energy car-
ried by one of the two photons. Values of ψ(y, Z) are given
in Table 4 for a number of H-like ions. All the contribu-
tions listed in Table 2 are included in these results. In
Figure 1 we show the spectral distribution of each contri-
bution for Z = 92.

Finally, our final values for 2s−1s decay rates for a
large selection of hydrogenic ions are presented in Table 5.
In column 2 of this table we list the one-photon M1 decay
rates w(M1) and in the column 3 the total two-photon
decay rates w(2γ). In the final column we give the total
decay rates for this transition w(tot), which is the sum of
the w(M1) contribution with the w(2γ) contribution. All
the values are in s−1.

The total decay rates are compared with the available
experimental data in Table 6. In all the cases, except in the
result for He+ by Hinds, Clendenin and Novick, the theo-
retical value are within the experimental error bar. More-
over, all the measurements are in agreement with theory
in such a way that the difference between the experimental
and theoretical results are, for almost all cases, less than
2.5%. For Ar17+ and Ni27+, the difference is less than 1%:
0.3% in the former and 0.6% in the later.

6.2 The influence of the QED corrections

In Table 7 we list the one-photon M1 decay rates for a set
of Z values calculated with and without QED corrections.
We observe that differences between the two results ∆
go from 0.05% for Z = 1, to 0.26% for Z = 92, which
confirms that the effects from QED corrections become
more important for high values of Z.

The influence of QED corrections on two-photon de-
cay rates is presented in Table 8. In this table we observe,
besides the expected differences between the results with
and without the mentioned corrections ∆, which go from
0.07% for Z = 1, to 0.47% for Z = 92, in the Coulomb
gauge case, the breakdown of gauge invariance when we
include radiative corrections. As it was stated above, the
necessary and sufficient condition for the transition ma-
trices for all multipoles to be gauge invariant is that the
transition matrix of electric multipoles for longitudinal
photons vanish identically. This condition is automatically
satisfied for exact functions or for a single-particle model,
but it may not necessary hold, for example, for a Dirac-
Fock model due to the effect of the nonlocal potential,
or for a model that, based in operators not included in
the Hamiltonian, corrects the energy, which is the present
case.

In the last column of Table 4 we also listed the fre-
quency distribution of the two-photon decay rate for Z =
92 calculated with QED corrections.
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7 Conclusions

In this article we have demonstrated, by the results of
Section 6, that the finite basis sets for the Dirac equa-
tion constructed from B-splines is a very powerful tool
for relativistic variational calculations, namely when ap-
plied to calculation of one- and two-photon decay rates.
Besides its ability to avoid numerical problems, a great
advantage of this method, over the commonly used Slater
method, for instance, is that the Hamiltonian matrix is
sparse (all the matrix elements between nonoverlapping
splines is zero) and therefore “well behaved”. Generation
of a B-splines basis for many-electron systems is also well
known and has been widely used in many-body pertur-
bation theory. By applying this method to the 2s → 1s
radiative transition, we have been able to calculate the
one-photon M1 decay rates w(M1), the total two-photon
decay rates w(2γ) and the total decay rates w(tot) for a
set of hydrogenlike ions with nuclear charge from Z = 1
to Z = 100. In the two-photon decay rates w(2γ) were in-
cluded the nine most important multipoles contributions.
We have shown also the breakdown of the gauge invari-
ance when QED corrections are included in the energy of
the initial and final states.

The calculations presented in this work have been done us-
ing the computer facilities at the Centro de F́ısica Atómica
da Universidade de Lisboa and at the Laboratoire Kastler-
Brossel. This research was supported in part by JNICT (Portu-
gal) under project Praxis/2/2.1/FIS/7223/94. J.P.S. acknowl-
edges support from the Embassy of France in Portugal and
JNICT for his stay in the Laboratoire Kastler-Brossel and P.I.
for his stay in the Centro de F́ısica Atómica da Universidade
de Lisboa.
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